Genetic determinants of mitochondrial content.
نویسندگان
چکیده
The mitochondria are the major cellular site of energy production and respiration. Recent research has focused on investigating the role of mitochondria in disease development and it has become increasingly evident that mitochondrial dysfunction contributes to a variety of human diseases. Mitochondrial DNA (mtDNA) quantity is very important for maintaining mitochondrial function and meeting the energy needs of the body. We have measured mitochondrial content in 1259 Mexican American individuals (from 42 extended families) and have shown that mtDNA quantity (a surrogate measure of mitochondrial integrity) has a large genetic component. We performed a genome scan and a genome-wide quantitative transcriptomic scan to identify QTLs influencing mitochondrial content. A variance components linkage-based genome scan utilizing 439 STR markers was used to localize a QTL for mitochondrial content on chromosome 10q (LOD = 3.83). Significant linkage to the mitochondrial genome was also detected for mitochondrial transmission (LOD = 3.39). For replication, we measured mitochondrial content in an independent Caucasian population (1088 individuals) finding evidence for linkage in these same regions. As part of the San Antonio Family Heart Study, we obtained genome-wide quantitative transcriptional profiles from 1240 individuals. Using lymphocyte samples, we quantitated 20 413 transcripts and examined correlations between the expression levels of these transcripts and mitochondrial content using the variance components method. Using regression analysis allowing for residual genetic components, we identified 829 transcripts (including many novel genes) influencing mitochondrial content that vary in their general biological actions, from cell signaling to cell trafficking and ion binding.
منابع مشابه
Genetic variation in the narrow-clawed crayfish (Astacus leptodactylus) populations as assessed by PCR-RFLP of mitochondrial COI gene
The genetic variation and population structure of narrow-clawed crayfish (Astacus leptodactylus) was examined by means of polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) analysis of the cytochrome oxidase subunit I (COI) of mitochondrial DNA. A total of 194 adult specimens were collected from seven sample sites including, two in the south Caspian Sea and one each...
متن کاملGenetic diversity in the Persian sturgeon, Acipenser percicus, from the south Caspian Sea based on mitochondrial DNA sequences of the control region
The Persian sturgeon, Acipenser persicus (Borodin, 1897), is an economically important species, which mainly inhabits the Caspian Sea. However, little is known about its population genetic structure. In this study, variation in nucleotide sequences of the mitochondrial DNA (mtDNA) control region of wild stock Persian sturgeon was determined to assess the genetic diversity among different natura...
متن کاملMitochondrial Diversity and Phylogenetic Structure of Marghoz Goat Population
The genetic diversity and phylogenetic structure was analyzed in Marghoz goat population by mitochondrial DNA sequences. Phylogenetic analysis was carried out using hyper variable region 1 (968 bp) obtained form 40 animals. Marghoz goat proved to be extremely diverse (average haplotype diversity of 0.999) and the nucleotide diversity values 0.022. A total of 40 Marghoz goats were grouped into s...
متن کاملSequence Variations of Mitochondrial DNA Displacement-Loop in Iranian Indigenous Sheep Breeds
Mitochondrial DNA (mtDNA) has been used extensively to study population genetics because it has the unique features of maternal inheritance, a relatively fast rate of evolution and lack of recombination. A total of 82 unrelated sheep from 10 Iranian indigenous sheep breeds were investigated to determinate the maternal genetic diversity using a sequence of a 685 bp segment of the displacement lo...
متن کاملChanges in Mitochondrial Dynamic Factors (mfn2 and drp1) Following High Intensity Interval Training and Moderate Intensity Continuous Training in Obese Male Rats
Objective: Mitochondrial content and function are important determinants of oxidative capacity and metabolic efficiency of skeletal muscle tissue. The aim of this study was to investigate the changes in mitochondrial dynamic factors (mfn2 and drp1) following high intensity interval training (HIIT) and moderate intensity continuous training (MICT) in obese male rats. Materials and Methods: In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2007